Fire Operator Workstation (Fire OWS) User’s Guide

Introduction

This user’s guide details the components, capabilities, and operation procedures of the Fire Operator Workstation (Fire OWS). The Fire OWS is an Operator Workstation (OWS) designed to comply with Underwriters Laboratories®, Inc. (UL) 864 UOJZ and National Fire Protection Association (NFPA 72) as part of the Metasys® Intelligent Fire Network (MIFN). Like the standard Metasys OWS, it is an easy-to-use, high-level interface for the operator of a Metasys Building Automation System (BAS).

This user’s guide describes how to:

- display the Fire Network Summary
- transfer a Single Fire-Net NCM
- transfer all Fire-Net NCMs under Active Fire OWS
- disable Block Acknowledge
- enable Block Acknowledge
- locate an Alarm, Security, or Trouble Message
- view Input Devices
- perform Control Operations on Input Devices
- adjust Input Device Sensor Settings
- view Output Devices
- perform Control Operations on Output Devices
Key Concepts

Fire OWS

The Fire OWS is used for fire alarm/trouble supervising station reporting as well as standard Metasys BAS functions. In addition, the Fire OWS is UL Listed under UUKL (Smoke Control System Equipment) and may be used to annunciate and manually control a smoke control system.

With the Fire OWS, the operator can, in addition to the building fire alarm system operation, perform the standard Metasys BAS functions: monitor and control the facility, examine historical and current information about facility operations, and define objects and features.

Active and **Monitor** modes can be switched between two or more Fire OWS locations on a MIFN. In Monitor mode, the Fire OWS can only view the MIFN; however, in Active mode, the Fire OWS can respond to changes of state from Intelligent Fire Controller (IFC) panels and provide control of IFC panels and devices.

Unlike the standard Metasys OWS, which is restricted to auxiliary (secondary) reporting of fire systems, the Fire OWS is UL Listed as a Primary Supervising Station for fire alarm reporting and control. The Fire OWS presents alarms, troubles, supervisory and security messages and can issue commands such as Acknowledge, Signal Silence, and System Reset to the IFC panels on the MIFN. These capabilities allow Metasys systems to be used in situations where multiple IFC panels are required as part of a Proprietary Fire Alarm System.

Note: NFPA 72 - 1999, section 3-8.1.3, specifies, “Protected premises fire alarm control units shall be capable of being reset or silenced only from the control unit at the protected premises.” Therefore, enable Signal Silence and Reset command functions in the Fire OWS only if the Fire OWS is in the same building as all IFC panels on the MIFN.

Active Fire OWS

The designated Fire OWS that can acknowledge fire alarms from a particular Fire-Net Network Control Module (NCM) or group of Fire-Net NCMs and their associated IFC panels on the MIFN. Each Fire-Net NCM may have one and only one active Fire OWS to comply with the UL 864 Listing.
Monitor Fire OWS

If there is more than one Fire OWS on a MIFN, the Fire OWSs not in the Active mode are operating in the Monitor mode. In Monitor mode, a Fire OWS can view activity on the MIFN and perform standard BAS functions. A Monitor Fire OWS has the ability to become Active. For example, a Fire OWS in Monitor mode can also be Active for any of the Fire-Net NCMs on the MIFN if the fire acknowledge function is transferred.

UL and NFPA Standards

The Fire OWS configuration meets the requirements of UL 864 UOJZ and NFPA 72 for Proprietary Supervising Station Systems. A Supervising Station is a facility that receives fire alarm signals and has personnel in attendance at all times to respond to fire alarm signals.

CAUTION: Risk of Personal Injury. Each fire system that meets the UL 864 UOJZ requirements must have established procedures the operator will follow; for example, in the event of an alarm or trouble.

Included Hardware and Software

The Fire OWS configuration consists of the following hardware:

- computer, monitor, keyboard, and mouse or optional touch screen (as a pointing device)
- two ARCNET® communications interfaces located in the computer: a preinstalled board to connect to the standard Metasys N1 Local Area Network (LAN), and a Media Interface Board (MIB-OWS) that is field installed and connects to the MIFN
- Fire Watchdog Enclosure with watchdog timer relay
- dedicated MIFN printer
- optional Metasys BAS reports printer

The Fire OWS runs two Microsoft® Windows® based programs: the field-installed Fire OWS software and the factory-installed Metasys Person-Machine Interface (PMI) software. No third-party software is allowed per UL 864.

Fire Alarm System Report Dialog Box

The Fire Alarm System Report Dialog Box is a special report window used at the Fire OWS indicating alarms, troubles, and supervisory and security alert (alarm) conditions. See Figure 4 for more information.
Fire Alarm System Reminder Box

The Fire Alarm System Reminder Box alerts the operator to any existing fire alarms, troubles, security alerts (alarms), or supervisory reports (for example, messages that have been acknowledged but not acted upon). The reminder box disappears when the condition that caused the message is resolved because, for example, the IFC panel trouble cleared. See Figure 5 for more information.

Fire Watchdog Enclosure

A watchdog timing relay housed in a three-tiered Universal Packaging Module (UPM) comprises the Fire Watchdog Enclosure. The relay monitors the Fire OWS LPT1 port to determine that the Fire OWS is operating. If the Fire OWS is shut down or fails, the relay reports a trouble by sounding an alarm. Every Fire OWS must have a Fire Watchdog Enclosure in the same room. The design of the Fire Watchdog Enclosure allows for the option of installing a Fire-Net NCM.

Fire-Net NCM

Fire-Net NCM is a special, UL Listed NCM350-type controller used to coordinate annunciation between IFC panels and the MIFN and between the IFC panels and the Fire OWS.

IFC Panel

You can use either an IFC-1010 or IFC-2020 Intelligent Fire Controller (Fire Alarm Control Panel) with Version 2.5 or M2.8 software.

Intelligent Network Annunciator (INA)

The INA is a reporting and control panel comprised of a liquid crystal display that displays fire alarms, security alerts, supervisory reports, and troubles from any IFC panel on the MIFN. Membrane switches on the INA perform system functions on all IFC panels on the MIFN, such as acknowledging fire alarms, silencing notification appliances activated by a fire alarm, and resetting IFC panels in alarm.

Media Interface Board (MIB)

The Media Interface Board (MIB and MIB-OWS) connects MIFN network nodes to the MIFN. The Fire OWS and Fire-Net NCM use an MIB-OWS, which is a two-tiered board, while the IFC panel and INA use a single-tiered MIB. The media interface boards are available in twisted pair wire, fiber-optic cable, or a combination of the two to interface with the MIFN.
Metasys Intelligent Fire Network (MIFN)

The Metasys Intelligent Fire Network (MIFN) is a fire alarm system that meets the requirements of UL 864 UOJZ and NFPA standards. The MIFN provides a communication interface for the following MIFN nodes: Fire OWS, Fire-Net NCM, INA and IFC panels. The MIFN and its network nodes function in cooperation with the Metasys N1 LAN to provide integrated fire alarm system and BAS management.

The Fire OWS and Fire-Net NCM connect to two networks: the standard Metasys N1 LAN and the Metasys Intelligent Fire Network (MIFN). The MIFN is a Local Area Network (LAN-based) interface that allows fire alarm system products to communicate over a true peer-to-peer network. The MIFN must be able to function independently of the N1 LAN to maintain the UL Listing.

The components of the MIFN include:

- MIFN nodes
- MIFN communication media (wire or fiber-optic cable)
- intelligent addressable monitor/control modules connected to IFC panels
- initiating devices and notification appliances connected to IFC panels

For more information on the MIFN, see the Metasys Intelligent Fire Network Technical Bulletin (LIT-448196). For information on monitor/control modules, initiating devices, and notification appliances, see the Introduction Technical Bulletin (LIT-408005).

The MIFN works in conjunction with the Metasys N1 LAN to provide complete fire and Building Management monitoring and control. All of the MIFN nodes share information across the two networks; however, only the Fire OWSs and Fire-Net NCMs are connected to both the MIFN and the N1 LAN. The MIFN is the fire system communication path; however, if path resources exist, fire system communication may run along the N1 LAN.

When the fire system requires commissioning and/or maintenance, communication runs along the N1 LAN. In addition, the N1 LAN provides the interface between the fire alarm, energy management, and smoke control systems.
MIFN Node

An IFC panel fire controller, INA annunciator, Fire-Net NCM, or Fire OWS connected to the MIFN. Every MIFN node must have a network node address assigned to it.

Controllers, annunciators, and workstations that connect to either the N1 LAN or MIFN and communicate with Metasys equipment are referred to as network nodes. The MIFN supports up to 50 MIFN nodes, which may be a combination of the following:

- Fire OWS
- IFC panels
- Fire-Net NCM
- INA

All MIFN nodes must have a network node address (also referred to as a node number) as detailed in the Node Addresses section of the Metasys Intelligent Fire Network Technical Bulletin (LIT-448196). There are certain node number range restrictions for the Fire OWS and Fire-Net NCM.

In addition, every MIFN node requires an interface board to connect to the MIFN. For more information on the network node address or what type of interface is needed for an MIFN network node other than a Fire OWS, see the Choosing a Media Interface Board section of the Metasys Intelligent Fire Network Technical Bulletin (LIT-448196).

Supervising Station

A Fire OWS that receives fire alarm signals and has personnel in attendance at all times to respond to the signals.

Uninterruptable Power Supply (UPS)

UPS is required for each Fire OWS, Fire-Net NCM, dedicated MIFN printer, and Fire Watchdog Enclosure. The UPS must meet the requirements of UL 1481.

Capabilities of the Fire OWS

Active, Monitor, BAS Modes

All standard Metasys OWSs and Fire OWSs can view the network nodes and devices on the MIFN as well as provide standard Metasys BAS functions. However, only the Fire OWS has the capability to control the MIFN nodes and devices. The Fire OWS can issue MIFN wide system commands that include alarm and trouble Acknowledge, Signal Silence, and System Reset. The Fire OWS can also issue device specific commands such as enable/disable and manual On/Off for each addressable device connected to any IFC panel on the MIFN.
A Fire OWS can be in Monitor and Active modes when communicating with a Fire-Net NCM and its associated IFC panels. While in Monitor mode, the Fire OWS cannot issue any system or device specific commands to the MIFN.

Table 1: Two Modes of Operation

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Active** | • Responds to alarms and changes of state from fire devices that are designated to send reports to that Fire OWS.
• Views all the fire devices on the MIFN.
• Issues system commands to all IFC panels on the MIFN.
• Issues commands to individual addressable control devices.
• Performs normal Heating, Ventilating, and Air Conditioning (HVAC) operation in a standard BAS environment. |
| **Monitor** | • May become Active.
• Views all the fire devices on the MIFN.
• Performs normal HVAC operations in a standard BAS environment. |

For a single or a group of Fire-Net NCMs, only one Fire OWS can take action on the Fire Alarm System Report dialog boxes, initiated by the IFC panels in that individual Fire-Net NCM or group of Fire-Net NCMs. That Fire OWS is considered to be in **Active** mode for that group and is displayed on the focus window of any fire hardware object resident in the Fire-Net NCM. The other Fire OWSs on the MIFN that are in the Monitor mode for that Fire-Net NCM cannot take action on that Fire-Net NCM and its associated IFC panels but can **Monitor** everything on the network (Figure 3). If more than one Fire-Net NCM and more than one Fire OWS exist on the MIFN, it is possible to configure the system so that one Fire OWS is Active for one or more Fire-Net NCMs and another Fire OWS is Active for other Fire-Net NCMs. For example, at one time Fire OWS Node 150 might be Active for Fire-Net NCM Node 72, then at another time Node 151 might take over Active mode for Node 70, leaving Fire OWS Node 150 in the Active mode for only the Node 71 Fire-Net NCM.

The purpose of having Active/Monitor modes on a Fire OWS is to ensure unmistakable responsibility. The operator who acknowledges the Fire Alarm System Report dialog box is responsible for taking the action appropriate to that dialog box. No other Fire OWS can acknowledge the report. If a Monitor Fire OWS tries to command a Fire-Net NCM not in its group, an error message will pop up on the screen.
Figure 1: Monitor Fire OWS trying to Command Fire-Net NCM

All Monitor mode Fire OWSs on the MIFN can view the Fire Alarm System Reports in the Critical summary, and all of the reports appear in the record of all Fire OWS dedicated MIFN printers.

Since the Fire OWS can acknowledge Fire Alarm System Report dialog boxes only in Active mode, the Active Fire OWS dedicated MIFN printer reports the acknowledgment.

Note: The standard Metasys Operator Transaction log can also report an operator acknowledgment at an Active Fire OWS.

An Active Fire OWS can issue the following commands to a Fire-Net NCM that a Fire OWS in Monitor mode cannot:

- Fire Alarm Report Acknowledgment
- IFC Panel Reset
- IFC Panel Signal Silence
- Enable/Disable individual addressable control devices
- Binary Data (BD) Command to a Fire-Net NCM
- Fire-Net NCM Download
- Modify and/or Delete Object in Fire-Net NCM
- Trigger Lock to object in Fire-Net NCM
- Communication Disable for a BD, Zone or Multiple Command (MC) in the Fire-Net NCM
- MC Commands to Fire-Net NCM
- Fire-Net NCM Diagnostic Functions (while running download program)
 - Reset
 - Reload
 - Modify
 - Write Non-Volatile Random Access Memory (NOVRAM)
All Fire OWSs and standard Operator Workstations can perform the following commands on the Fire-Net NCM:

- Object Add
- Report Lock (standard Metasys reports only)
- Modifications to Fire Network Controller (NC) Object Report Type Fields

There are certain features that a standard Operator Workstation or Fire OWS can control in a standard NCM350 that are not available from a Fire-Net NCM. These include:

- N2 Devices
- Point History
- Trend
- Totalization
- Graphic Programming Language (GPL) Processes

The Active/Monitor mode operation of the Fire OWS is designed to comply with NFPA 72 for Proprietary Supervising Station Systems.

Role in the Metasys BAS

The Fire OWS is designed to present Fire Alarm System Report dialog boxes to a single operator while still supporting as many of the standard Metasys Operator Workstation functions as possible. Fire Alarm System Report dialog boxes consist of fire alarms, troubles, and supervisory and security-related conditions.

![Figure 2: Fire OWS’s Role in the Metasys BAS](image-url)
From the Fire OWS, you have access to and control of the entire Metasys BAS. However, the Fire OWS can function as the annunciation device in a fire alarm system operated under the NFPA 72 Proprietary Protective Signaling System standard. The Fire OWS can allow the operator to enable and disable addressable alarm initiating and control devices and manually command On or Off addressable control devices in the IFC fire alarm control panels connected to the MIFN.

IMPORTANT: Operators that use the Fire OWS are required by NFPA 72 to know how to respond to fire alarms, troubles, supervisory and security-related conditions, and so on, that occur on the fire system. The operator is the one person responsible for taking action on the fire system alarms.

Default Active Fire OWS

On networks with more than one Fire OWS, the default Active Fire OWS is the Fire OWS with the lowest node number, unless the Active Fire OWS is identified in programming. This process occurs within 1 minute at initial commissioning of the system and again each time there is a download to the Fire-Net NCM. Subsequent restarts show the new node address the operator assigned or was automatically assigned by the default until the Fire-Net NCM is downloaded again.

Defining Report/Access Groups

All Fire OWSs should be included as destinations in the default Report/Access Group (Group 1). This group is required to display NI node offline conditions.

Figure 3: Fire Network Summary
Description of a Fire Network Summary

The Fire Network summary is a visual representation of the MIFN. As described earlier, the MIFN is an independent network that must function regardless of the condition of the standard N1 LAN.

The Fire Network summary shows the MIFN status, which is the status of the network nodes on the MIFN. A network node can be online, offline, no communication (comm), Fault A, and/or Fault B. Table 2 describes each state.

In Figure 3, the IFC panels listed immediately below a Fire-Net NCM are the IFC panels defined at that Fire-Net NCM. This information comes from the Fire-Net NCM. The Fire OWS is Active for the Fire-Net NCMs listed immediately below the Fire OWS. If no Fire-Net NCM is listed immediately below a Fire OWS, it is in Monitor mode.

If there are multiple Fire-Net NCMs on the MIFN, it is possible that some Fire-Net NCMs are listed under one Fire OWS and others under another Fire OWS. In that situation, each Fire OWS is in the Active mode for the Fire-Net NCMs listed immediately following the Fire OWS and is in the Monitor mode for any Fire-Net NCMs not listed immediately below it. The status information comes from the Fire OWS MIFN communications software.

Table 2: Network Node State

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online</td>
<td>Node communicating across the MIFN normally</td>
</tr>
<tr>
<td>Offline</td>
<td>Node is not communicating across the MIFN</td>
</tr>
<tr>
<td>No Comm</td>
<td>Node exists in database, but the node has not communicated</td>
</tr>
<tr>
<td></td>
<td>since the last download.</td>
</tr>
<tr>
<td>Fault A</td>
<td>On Style 7 applications, there is a fault in the wiring next to Port A on the node; node is still online.</td>
</tr>
<tr>
<td>Fault B</td>
<td>On Style 7 applications, there is a fault in the wiring next to Port B on the node; node is still online.</td>
</tr>
</tbody>
</table>

Transferring Active Mode

When a Fire-Net NCM is online, you can change the Fire OWS that you have designated as the Active Fire OWS for that Fire-Net NCM by requesting a transfer at a Monitor mode Fire OWS. The transfer operation requires a particular password level that is detailed in the Password Technical Bulletin (LIT-636111). The operator that requests Monitor mode Fire OWS transfer can select either a single or group of Fire-Net NCMs by highlighting the Fire-Net NCMs or Fire OWSs that are active for those NCMs on the Fire Network summary.
Note: Only the Fire OWS requesting Active mode can perform the transfer. This precaution ensures that an operator is present at the machine that is operating in Active mode.

You cannot transfer the Active mode from an Active Fire OWS to a Monitor Fire OWS. For example, Fire OWS 151 cannot give its Active mode to Fire OWS 150 (Figure 3). Fire OWS 150 must request to have the Active mode.

To select a single Fire-Net NCM, highlight it on the Fire Network summary. If you want to transfer all of the Fire-Net NCMs under a particular active Fire OWS, select the Fire OWS. You can select multiple Fire-Net NCMs or Fire OWSs.

Note: The Fire-Net NCM may refuse the transfer command if the Monitor mode Fire OWS is not properly communicating on the MIFN. Ensure that optional Metasys configuration file settings are the same before transferring active mode. If you do not, some features may not work on the new Active OWS.

Managing Fire Alarm System Reports

The Fire Alarm System Report dialog box appears (Figure 4) on the Active Fire OWS when an alarm, trouble, supervisory, security, or off-normal reports occur in the MIFN. When the Fire OWS receives a report, an audible alert sounds.

All alarm, trouble, supervisory, and other reports are reported to the Critical summaries of all the Fire OWSs on the MIFN and are printed at every Fire OWS dedicated MIFN printer.

![Figure 4: Fire Alarm System Report Dialog Box](image-url)
Types of Alarms

The Fire Alarm System Report dialog box indicates five different Change-of-State (COS) types, each distinguished by a different color (Table 3).

<table>
<thead>
<tr>
<th>Critical Summary Level Used</th>
<th>Color</th>
<th>Type of COS</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Red</td>
<td>Fire</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Magenta</td>
<td>Security/Trouble</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Orange</td>
<td>Supervisory Points</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Yellow</td>
<td>Off Normal/Trouble</td>
<td>4=Fire Point Trouble</td>
</tr>
<tr>
<td>4</td>
<td>Green</td>
<td>Return to Normal/Warning</td>
<td>6=Clear Fire Alarm</td>
</tr>
<tr>
<td>4</td>
<td>Green</td>
<td>Transfer</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: Color shown in Fire Alarm System Report Dialog Box.

Message Counters

The purpose of the message counters on the Fire Alarm System Report dialog box is to indicate the existence of multiple unacknowledged change-of-state messages sent to the Fire OWS. The message counters are stored on each IFC panel, not in the Fire OWS. The Fire-Net NCM receives data from the IFC panels, and the Fire OWS then receives data from the Fire-Net NCMs to create alarm, trouble, and other counter totals that appear on the Fire Alarm System Report dialog box.

For example, if multiple alarms occur on the network at the same time, the first alarm is displayed on the Fire Alarm System Report dialog box and the total number of unacknowledged changes of state appears under the Unacknowledged section. You acknowledge each alarm, security alert, trouble, and supervisory one at a time, starting with the highest priority. As you acknowledge, the counter numbers decrease (following a slight delay due to the time it takes the IFC panels to process the acknowledgement).
Unacknowledged Counters

If an IFC panel temporarily loses communication with the MIFN, the unacknowledged alarms/trouble/other counters at the IFC panel remain stored in the IFC panel’s memory. The Fire Network summary at the Fire OWS indicates that the IFC panel and fire devices are offline. Once communication is restored, the unacknowledged messages that were stored at the IFC panel are resent to the Fire OWS.

In the case where an IFC panel goes offline, all unacknowledged alarm/trouble/other counters that were previously counted are reset. Since the Fire-Net NCMs receive data from the IFC panels in its group, if the Fire-Net NCM should go offline, all of the counters for all of the IFC panels designated under that Fire-Net NCM are reset. In this case, all of the unacknowledged alarm/trouble/other counters are also reset.

Offline to Online Message Queue

You may run into a situation where the message counters do not appear to be subtracting the messages you are acknowledging. For example, you may clear an alarm, see the counter subtract one, and then the same counter adds it again.

A possible cause of this situation is a node or group of nodes that goes offline, and before you can acknowledge the offline message, the nodes return online. When you acknowledge the offline message, the Fire OWS software checks the status of the node at that time. If a node is back online before the software verifies the offline, a new change-of-state message is sent to the Fire OWS. Although you acknowledge the offline (subtract one from the counter), the online message is detected (adds one to the counter) at the same time.

Alarm Acknowledgement

All of the alarms are acknowledged one at a time on an NFPA 72 Proprietary Supervising Station System. However, U.S. Fire Systems can use Block Acknowledge for normal, daily operation within a Local Fire Alarm System. Block Acknowledge cannot be used for normal, daily operation within a Proprietary Signaling System; it can only be used for maintenance or commissioning purposes. If your fire system is located in a country outside of the United States, or if the MIFN is being operated as an ancillary annunciation station while the individual IFC-1010/2020 panels are being operated as Local Fire Alarm Systems, Block Acknowledge is also an option.
Printing Alarms

All acknowledge actions are printed to the dedicated MIFN printer at the Fire OWS where the acknowledge is done. All Change-of-State (COS) Fire Alarm System reports are printed at all Fire OWS dedicated MIFN printers, both in Monitor and Active modes.

Reminder Box

In addition to the Fire Alarm System Report dialog box, UL requires a second method of alerting the operator to any existing fire alarms, troubles, or security messages that have already been acknowledged. The Fire System Reminder becomes the active window or moves to the top of all current windows every 30 minutes to let the operator know when there are acknowledged alarms or troubles that have not been acted upon and cleared (Figure 5). The Reminder box can never be closed and remains underneath other windows until 30 minutes (or the default you set in the METASYS.INI file) expire. When all alarms, security, troubles and communication messages are clear, the Reminder box disappears.

![Figure 5: Fire Alarm System Reminder Box](image)

Reset Operations

If Reset Operations are enabled, an operator can perform fire alarm IFC panel reset operations on all panels on the MIFN (as long as all panels are in the same building as the Fire OWS initiating the reset command) in the following summaries [see Appendix B in the Fire Operator Workstation (Fire OWS) Technical Bulletin (LIT-636014)]:

- Standard summary
- Fire Hardware Object Focus window
- Fire Network summary

Multiple IFC panel resets can be performed all at once from the Standard summary, Fire Network summary, or a Multiple Command object.
Note: After the Fire OWS software is installed, and if no changes are made to the setup files, the Reset feature is enabled [see Table 16 located in Appendix B of the Fire Operator Workstation (Fire OWS) Technical Bulletin (LIT-636014)].

Signal Silence Operations

If Signal Silence Operations are enabled, an operator can perform fire alarm IFC panel signal silence operations on all panels on the MIFN (as long as all panels are in the same building as the Fire OWS initiating the signal silence command) in the following summaries [see Appendix B in the Fire Operator Workstation (Fire OWS) Technical Bulletin (LIT-636014)]:

- Standard summary
- Fire Hardware Object Focus window
- Fire Network summary

Multiple IFC panel signal silence commands can be performed all at once from the Standard summary, Fire Network summary, or a Multiple Command Object.

Note: After the Fire OWS software is installed, and if no changes are made to the setup files, the Signal Silence feature is disabled [see Table 16 located in Appendix B of the Fire Operator Workstation (Fire OWS) Technical Bulletin (LIT-636014)].

IMPORTANT: For Reset and Signal Silence Operations, selection is required to disable function in order to comply with NFPA 72-1999, section 3-8.1.3 in a multi-building installation of the MIFN.

⚠️ CAUTION: Risk of Injury. Signal Silence and Reset Operations are strictly controlled by UL Listings and the NFPA 72. If any IFC panel on the MIFN is located in a building other than that in which the Fire OWS is located, obtain Authority Having Jurisdiction (AHJ) approval before you enable the Signal Silence and/or Reset command capability.
Fire OWS Restart Function

If you need to restart the Fire OWS after it has already been functioning on the network, follow the guidelines below:

- Only use the Metasys icon to restart the Metasys system when the Fire OWS is offline for 70 seconds or more so other network nodes have a chance to detect that the Fire OWS is offline.

- If the Fire OWS has not been offline for at least 70 seconds or more, you must:
 - type `Metasys` at the MS-DOS prompt if you do not want to reboot
 - reboot and the Metasys system should automatically start up

WARNING: You can only use the icon if the Fire OWS has been offline for more than 70 seconds. If the Fire OWS is started with the Metasys icon before the time requirement is met, the system does not function properly until the MIFN protocol resynchronizes.

- One minute after the Metasys system starts, the Fire OWS checks to see the status of the other Fire OWSs and Fire-Net NCMs on the MIFN and indicates by a Fire Alarm System Report dialog box if a device is offline or has a fault. IFC panels are excluded because they report to the Fire-Net NCMs. This process occurs every time the Fire OWS is restarted.

- INAs are not automatically checked during the initial MIFN system check mentioned above. Once you verify the status of the Fire OWSs and Fire-Net NCMs, go to the Fire Network summary and verify that all the INAs on the system are listed and functioning properly. See the Intelligent Network Annunciator (INA) Technical Bulletin (LIT-448193) for more information.

Graphics Display

Like the standard Operator Workstation, the Fire OWS can display your facility with both text and graphics. However, when graphics are being drawn on the screen, the Fire OWS is busy. In order to avoid keeping the Fire OWS unnecessarily busy, allow the graphics a minimum amount of time to redraw. No drawing should take more than 5 seconds to render. The Fire OWS needs to be available at all times so it is able to receive all Fire Alarm System Report dialog boxes in a timely manner. For more details on graphics, see the Graphics Technical Bulletin (LIT-636108).
Windows Task and Start Bar in Hide Mode

The Task and Start bar at the bottom of the Windows main screen must be turned off during normal Fire OWS operation. When the task bar is hidden, the user is able to continually monitor the Fire OWS system without access to unrelated Windows functions such as the Internet. The parameter HideStartBar=1 must be set in the Metasys.ini file for Fire OWS, where 1=Hidden and 0=Not Hidden. This parameter is automatically set to 1=Hidden during Fire OWS installation.
Detailed Procedures

Displaying the Fire Network Summary

Note: Access the Fire Network summary using the Summary option in the Network Map menu bar, like most online summaries. You do not need to select a particular object on the map. In a Fire Network summary, the entire fire system appears at the MIFN node level.

To display the Fire Network summary:

1. Go to the Network Map.
2. Click the Summary option in the Network Map menu bar. A scroll down list of all the summaries appears.
3. Select Fire Network from the list of summaries and click Display (or print if desired). The Fire Network summary appears (Figure 3).

Transferring a Single Fire-Net NCM

To transfer a single Fire-Net NCM:

1. Select (highlight) the Fire-Net NCM on the Fire Network Summary (Figure 3).
2. From the Action menu, select Transfer to This OWS. The Fire Alarm Active Station Transfer dialog box appears (Figure 6). The dialog box shows the NC as the transfer type.
3. Click OK. The transfer takes place. The Transfer Complete message appears (Figure 7).

![Fire Alarm Active Station Transfer](transfr1)

Figure 6: Fire Alarm Active Station Transfer with NC Selected
4. Click OK. The screen refreshes and shows the new arrangement.

Transferring all Fire-Net NCMs under Active Fire OWS

To transfer all Fire-Net NCMs under Active Fire OWS:

1. At the Fire OWS to which you want the Active mode transferred, select the active Fire OWS from the Fire Network Summary (Figure 3).

2. From the Action menu, select Transfer to This OWS.

3. Click OK. The transfer takes place. The Transfer Complete message appears (Figure 7).

4. Click OK. The screen refreshes and shows the new arrangement.

Note: When you transfer a single or group of Fire-Net NCMs, the Fire OWS from which the Active status originated displays Fire Alarm System Report dialog boxes indicating the status change (Figure 8).

The Active Fire OWS transfer is routed to the operator transaction log of the default (Group 1) Report/Access group.
Disabling Block Acknowledge

Note: In the United States, Block Acknowledge must be disabled on a fire system operated as a Proprietary Supervision Station System to comply with UL 864. To disable Block Acknowledge:

1. At each IFC panel, turn on the Receive mode.

 Note: For instructions on how to put the IFC panel into Receive mode, see the *IFC-1010/2020 Programming Technical Bulletin (LIT-448060)*. Information on turning on Receive mode (RCV) is included in Step 7 with regard to modifying NFPA standards.

2. At the Fire OWS, change the AllowBlockAck line in the METASYS.INI file to:

   ```
   AllowBlockAck=0
   ```

 The default is 0, which is no Block Acknowledge.

3. Restart the Metasys system for changes to take effect.

 If your system is not operating as a fire system (undergoing maintenance), you may be able to temporarily use the Block Acknowledge feature. Check with the codes and restrictions of the country you are in or the local Authority Having Jurisdiction (AHJ).

Enabling Block Acknowledge

To enable Block Acknowledge:

1. Turn off Receive mode at each IFC panel where Block Acknowledge is required.

2. Make sure the following is in your METASYS.INI file:

   ```
   AllowBlockAck=1
   ```

 The default is 0, which is no Block Acknowledge.

3. Restart the Metasys system for changes to take effect.

 You are able to block acknowledge the following:

 - troubles at one IFC panel
 - returns to normal report

 Note: The return to normal report only shows the first report received when acknowledging even if individually acknowledged.
Locating an Alarm, Security, or Trouble Message

To locate an alarm, security, or trouble message:

1. Start at the Network Map and highlight the Personal Computer (PC) group or groups that contain the fire panels.

2. From the Network Menu, select Summary. If you are trying to locate an alarm, choose the Alarm summary. For a security and trouble, select the Trouble summary.

3. Locate the fire alarm panel in the summary.

4. Use the Fire Focus window to look for inputs/outputs that are in alarm or trouble, for example.

Viewing Input Devices

From the Fire Controller Focus window, you can enable or disable addressable input devices, and enable, disable, turn on/off the addressable output devices.

To view input devices:

1. From the Network Map, select the fire system that contains the IFC panels.

2. Go to the Focus window for the IFC panel.

3. Double-click on Input Devices and the Filter-Input Devices dialog box appears (Figure 9).

![Figure 9: Filter for Input Devices Dialog Box](image-url)
Note: When using the filter Any Trouble, the summary does not list points that are disabled locally at the IFC panel, even though those points would report a trouble. The Off Normal and Disable Locally filters do list points that are disabled locally.

4. Choose the scope and search criteria and choose Display. The Input Devices window appears.

Performing Control Operations on Input Devices

To perform control operations on an input device:

1. Select (highlight) one or more input devices, and from the Action menu, choose Operation. The Operation-Fire Devices dialog box appears.

![Operation-Fire Devices Dialog Box](image)

Figure 10: Operation-Fire Devices Dialog Box

2. Select enable or disable and click OK.

Adjusting Input Device Sensor Settings

To adjust the input devices sensor settings:

1. Select one or more devices.

![Input Devices - Sensor Settings Dialog Box](image)

Figure 11: Input Devices-Sensor Settings Dialog Box
3. Select the appropriate settings under the Default Sensitivity, Verify, and Day/Night Adjustment and click OK.

Viewing Output Devices

To view an output device:

1. From the Network map, select the fire system that contains the IFC panels.
2. Go to the Fire Focus window for the IFC panel that is connected to the output device.
3. Double-click on output devices. The Filter-Output Devices dialog box appears (Figure 12).

```
Filter -Output Devices

Search Criteria
- Any State
  - Off Normal
  - Any On State
  - Any Trouble
  - Disable Locally

Display
Print
Cancel

Start at Loop 1
```

Figure 12: Filter-Output Devices Dialog Box

Note: When using the Any Trouble filter, the summary does not list points that are disabled locally at the IFC panel, even though those points would report a trouble. The Off Normal and Disable Locally filters do list points that are disabled locally.

4. Select your search criteria and select Display. The Output Devices window appears.

Performing Control Operations on Output Devices

To perform control operations on an output device:

1. Select one or more devices, and choose Operation from the Action menu. The Operation-Fire Devices dialog box appears (Figure 13).
2. Select the operation you want to perform on the output device.

Note: Commands to addressable devices can also be done starting from a Zone Focus window. In this case, only fire points listing the current zone in their interlock statement can be viewed.